A Total Win…with lots of understanding

Before I left for the Anjs S. Greer Math Conference last week, I read an amazing blog entry at the Math Ed Matters website by Dana Ernst and Angie Hodge that was talking about Inquiry-Based Learning and the mantra “Try, Fail, Understand, Win.”  The idea came from one of Prof. Ernst’s student course evaluations this past spring as his student summed up his learning experience in such an IBL course.  This blog post was so meaningful to me because for each of these four words, the authors wrote how we as teachers (and teacher educators) can take this student’s perspective towards our own work.  I decided to attempt to take this attitude going off to my own conference with two courses to give and three smaller talks.  It was sure to be a busy week.

And in fact, it really was.  I had very little time to sit and listen to others’ work, which I really was quite sad about.  However, in my own classes I was so impressed with the amount of enthusiasm and excitement my participants had for PBL and their own learning.  As I sat in front of my computer this morning reading the course evaluations and their tremendously helpful input, it finally occurred to me how truly powerful the experience had been for my participants.  Many of them became independent thinkers and knowers about PBL and feel so much more knowledgeable and prepared for the fall.    Part of the class time is spent in “mock PBL class” where I am the teacher/facilitator and they are the students doing problem presentations.  We then sit and talk about specific pedagogical questions and distinctions in classroom practice.  Some of the class time is spent in challenging problem solving which is where I also learn so much from the participant’s different perspectives. “We win when we realize there’s always something we can do better in the classroom” – as Ernst and Hodge write.

The now Infamous ‘French Garden’ Problem

I want to give a huge shout out to all of my participants from last week and encourage them to keep in touch with me.  Many of you wrote in your evaluations that you still have many questions about your practice and how to integrate your vision of PBL in your classroom.  I will always be only an email away and hope that you continue to question your practice throughout the year.

My plan is to try to write some blog posts at the end of the summer/beginning of the year in order to respond to some of the remaining questioning while you plan for the beginning of the school year such as:

  1. How to plan for week one – writing up a syllabus, creating acceptable rules
  2. Helping students who are new to PBL transition to it
  3. Assessment options – when to do what?
  4. Working hard to engage students who might not have the natural curiosity we assume

If you can think of anything else that you might find helpful, please post a comment or send me a message and I’d be happy to write about it too!  Thanks again for all of your feedback from the week and I look forward to further intellectual conversation about teaching and PBL.

PBL – Students making Mathematical Connections

As someone who has used Problem-Based Learning for almost 20 years and sad to say has never been part of a full-fledged Project-Based Learning curriculum, what I know best is what I call PBL (Problem-Based Learning).  I know there is a lot of confusion out there is the blogosphere about what is what, and with which acronyms people use for each type of curriculum.  I did see that some people have been trying to use PrBL for one and PBL for the other, but I guess I don’t see how that clarifies – sorry.

So when I use the acronym PBL in my writing I mean Problem-Based Learning and my definition of Problem-Based Learning is very specific because it not only implies a type of curriculum but an intentional relational pedagogy that I believe is needed to support learning:

Problem-Based Learning (Schettino, 2011) – An approach to curriculum and pedagogy where student learning and content material are (co)-constructed by students and teachers through mostly contextually-based problems in a discussion-based classroom where student voice, experience, and prior knowledge are valued in a non-hierarchical environment utilizing a relational pedagogy.

Educational Psychologist and Cognitive Psychologists like Hmelo-Silver at Rutgers University have done a lot of research on how students learn through this type of scaffolded problem-based curriculum dependent on tapping into and accessing prior knowledge in order to move on and construct new knowledge.  There was a great pair of articles back in 2006/2007 where Kirschner, Sweller & Clark spoke out against problem- and inquiry-based methods of instruction and Hmelo, Duncan and Chinn responded in favor.  I highly recommend reading these research reports for anyone who is thinking of using PBL or any type of inquiry-based instruction (in math or any discipline).  It really helps you to understand the pros and cons and parent and administrator concerns.

However, after you are prepared and know the score, teachers always go back to their gut and know what works for their intuitive feeling on student learning as well.  For me, in PBL, I look at how their prior knowledge connects with how, why and what they are currently learning.  One of the best examples of this for me is a sequence of problems in the curriculum that I use which is an adaption from the Phillips Exeter Academy Math 2 materials.  I’ve added a few more scaffolding problems (see revised materials) in there in order to make some of the topics a bit fuller, but they did a wonderful job (which I was lucky enough to help with)and keep adding and editing every year. The sequence starts with a problem that could be any circumcenter problem in any textbook where students use their prior knowledge of how to find a circumcenter using perpendicular bisectors.

“Find the center of the circumscribed circle of the triangle with vertices (3,1), (1,3) and (-1,-3).”

Students can actually use any method they like – they can use the old reliable algebra by finding midpoints, opposite reciprocal slopes and write equations of lines and find the intersection points.  However, I’ve had some students just plot the points on GeoGebra and use the circumcenter tool.  The point of this problem is for them to just review the idea and recall what makes it the circumcenter.  In the discussion of this problem at least one students (usually more than one) notices that the triangle is a right triangle and says something like “oh yeah, when we did this before we said that when it’s an acute triangle the circumcenter is inside and when it’s an obtuse triangle the circumcenter is outside.  But when it’s a right triangle, the circumcenter is on the hypotenuse.”

Of course then the kid of did the problem on geogebra will say something like, “well it’s not just on the hypotenuse it’s at the midpoint.”

 

Dicussion will ensue about how we proved that the circumcenter of a right triangle has to be at the midpoint of the hypotenuse.

A day or so later, maybe on the next page there will be a problem that says something like

“Find the radius of the smallest circle that surrounds a 5 by 12 rectangle?”

Here the kids are puzzled because there is no mention of a circumcenter or triangle or coordinates, but many kids start by drawing a picture and thinking out loud about putting a circle around the rectangle and seeing they can find out how small a circle they can make and where the radius would be.  When working together oftentimes a student see a right triangle in the rectangle and makes the connection with the circumcenter.

A further scaffolded problem then follows:

“The line y=x+2 intersects the circle  in two points.  Call the third quadrant point R and the first quadrant point E and find their coordinates.  Let D be the point where the line through R and the center of the circle intersects the circle again.  The chord DR is an example of a diameter.   Show that RED is a right triangle.”

Inevitably students use their prior knowledge of opposite reciprocal slope or the Pythagorean theorem.  However, there may be one or two students who remember the circumcenter concept and say, “Hey the center of the circle is on one of the sides of the triangle.  Doesn’t that mean that it has to be a right triangle?”  and the creates quite a stir (and an awesome “light bulb” affect if I may say so myself).

A few pages later, we discuss what I like to call the “Star Trek Theorem” a.k.a. the Inscribed angle theorem (I have a little extra affection for those kids who know right away why I call it the Star Trek Theorem…)

I will always attempt to revisit the “RED” triangle problem after we discuss this theorem.  If I’m lucky a student will notice and say, “Hey that’s another reason it’s a right triangle – that angle opens up to a 180 degree arc, so it has to be 90.”  and then some kid will say “whoa, there’s so many reasons why that triangle has to be a right triangle”  and I will usually ask something like, “yeah, which one do you like the best?” and we’ll have a great debate about which of the justifications of why a triangle inscribed in a circle with a side that’s a diameter has to be right.  So who are the bigger geeks, their teacher who names a theorem after Star Trek or them?

References:

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.

 

Hmelo, C. E., Duncan., R.G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller and Clark (2006). Educational Psychologist, 42(2), 99-107.

 

Worked examples in PBL?

Apologies for not writing in so long. Transitions can be hard and making my way through a new school, new place to live and way too many other changes in my life have caused me to put this blog lowest on the priority list. However, in preparing for my course at the PEA conference next week, I came across a wonderful article in the Interdisciplinary Journal for Problem-Based Learning by David Jonassen at the Univesity of Missouri. I have meant to write about this for quite a while because he write about “Supporting Problem Solving in PBL” and has created this great structure that describes the components and scaffolds for PBL environments. It kind of shows the different parts of a PBL environment and the cognitive ways in which students move through the environment focused on the problem, but how they navigate learning. One of the pieces that he talks about that was in this environment was “worked examples.” When I first read this, I was aghast and totally taken aback. How could this be? Why would someone propose that worked examples are part of PBL and isn’t this totally against everything that PBL stands for? I mean, why not just go back to direct instruction and have the teacher standing up at the board working examples for the whole class? OK, that’s a little extreme. I think I over-reacted and went to Jonassen’s part of the article where talks about this.

He states “The most common method for supporting schema construction is the worked example” which I believe is him stating that from a cognitive standpoint the “most common” way for a student to build a schema of seeing how to do something is for someone to show them how to do it. I do believe there is research that shows this. However, I do not believe that there is research that shows that this is the best way for the to construct a schema for understanding. In fact, Jonassen goes on to say that “worked examples should break down complex solutions into smaller meaningful solution elements, present multiple examples in multiple modalities for each kind of problem, emphasize the conceptual structure of the problem vary formats within problem types, and signal the deep structure of the problem…It is doubtful that worked examples are effectively applicable to very ill-structured problems. How can you model a solution that is unknown?” So if teachers did what he says here, they would work examples in many modalities – all representations so that the conceptual connections could be made and not just the procedural ones. Students would be able to see the bigger picture of mathematics more often because they would realize that in the real world they are not given problems that are repetitive and exactly like one that has already been worked out for them. They would be prepared for the fact that they could be given a problem that may have a solution that is unknown. We have a responsibility as teachers to prepare them for that possibility.

So I believe that what Jonassen is saying here is, don’t be afraid to, if necessary, stand up and work out a problem for a student if they are confused and ask you to show them something. That is part of your job to clarify a question or a process for them. However, it should not be part of the plan. Be open to different modalities of representing the work – not all students think the same and they need to see the differences in order to understand the full concept to big picture overall anyway. Limiting yourself to one way of working out an example is not helping them in anyway. So allowing yourself to be open to helping them “work it out” is really the best way to handle it for everyone.