Get Comfortable with Uncertainty: A Short Dialogue

And so it begins.   The students are flustered. The emails are coming at night.  The faces stare at me, scared to death.  Although I repeat numerous times, “You do not have to come to class with each problem done and correct” students are totally freaking out about the fact that they can’t “do their homework” or they can’t “get” a certain problem on the homework.  No matter how many times I attempt to send the message the first few weeks about how unnecessary it is to come to class with a problem complete or an answer to show, students feel the need.

Tomorrow I am writing on my large post-it notes in HUGE capital letters, “Get comfortable with uncertainty because it’s not going anywhere.”  Every year about this time, I give the speech about how my homework is extremely different from any homework they have probably encountered in math class.  These are not problems that you are supposed to read, recognize and repeat.  They are there to motivate your thinking, stimulate your brain and trigger prior knowledge.  In other words,  you need to be patient with yourself and truly create mathematics.

Today I met with a young woman who I thought was about to cry.  She came and said, “I can’t do this problem that was assigned for tomorrow.”  Here’s how the conversation went:

Me: Why don’t you read the problem for me?

Girl:  Find points on the line y=2 that are 13 units from the point (2,14)

Me:  Ok, so show me what you did. (she takes out her graph paper notebook and shows that she graphed the line y=2, plotted the point (2,14)).  Great, that’s a great diagram.

Girl:  But it didn’t make sense because in order for it to be 13 units away, it had to be like, diagonal.

Me: Huh, what would that look like?

Girl: (drawing on her diagram) There’d be like two of them here and here.

Me; yeah?

Girl: But it can’t be like that….

Me: yeah? Why not?

Girl: Um…cause it wouldn’t be a straight distance.  I think..

Me: Is it 13 units away from (2,14)?

Girl: yeah, I think so…

Me: Hmmm….how far is (2,14) from the line y=2?

Girl:  Oh that’s easier – it’s like 12. ..Oh My gosh..it’s like a hypotenuse….and the other side that I don’t know is like the a and the 12 is like the b.  I can just find it.  Oh my gosh that’s so easy.  And the other one is on the other side.    Why didn’t I see that?

Me:  Well, you did…actually….

Girl: well, after you asked me that question…

Me: yeah, but eventually you’ll learn how to ask yourself those questions.

 

And they do….it’s just the beginning of the year.  We have to give them time – time to look into their prior knowledge as a habit, time to surprise themselves, time to have those moments, time to enjoy the moment and revel in the joy and courage and disappointment.  It’s all a part of the breakthrough that is needed to realize that they are creative and mathematics needs them to be.  It’s amazing and it’s worth it.

Anja S. Greer Conference 2013

What a great time we had this week in my courses!  I am so excited by all of the folks that I met and the CwiC sessions of other leaders that I went to.  Pretty awesome stuff presented by Maria Hernandez from NCSSM, my great colleague Nils Ahbel, Tom Reardon, Ian Winokur, Dan Teague, Ken Collins and many others.  I was so busy that I didn’t get to see many other people’s sessions so I feel somewhat “out of it” unfortunately.

I want to thank everyone that came to my CwiC’s and remind them to be sure to go and pick up my materials on the server before they leave.

For my participants – here are the links to the course evaluations:

Moving Forward with PBL: Course Evaluation

Scaffolding and Developing a PBL Course:  Course Evaluation

An infinite amount of thanks…

Everyone has those mentors in their life who have impacted their work or career in ways that have truly changed who they are.  In my instance, the person I am going to write about not only has impacted my life and career, but because he taught me so much about great teaching, in particular PBL, he has impacted all of the students and teachers I have worked over my twenty year career so far.  So I feel justified in taking a short break from writing strictly about professional educational work musings and just finding a moment to say thanks for the life and work of Rick Parris.

Even if you never met Rick in his time teaching at Phillips Exeter Academy, or used his wonderful opensource Peanut software for windows machines, or downloaded the faculty-authored materials that he was integral in writing by the mathematics department at PEA – if you have worked with me at all, you have been affected by Rick’s work.  Rick Parris had to be one of the most brilliant, efficient, insightful  mathematicians I’ve ever been lucky enough to work with.  He saw things in a problem that I definitely never would be able to see in a million years.  I was so extremely intimidated by him when I first started working in the same department that I would go for days confused about a problem instead of go up and ask him.  But what I soon found was that not only was he one of the most brilliant mathematicians, I’ve ever met, but he was one of the best teachers too.  Now, there is a rare combination – finding someone who has the insightful intelligence to be able to have a Ph.D. in mathematics but to also be so sensitive to others’ understanding of the subject and the patience and passion to want them to love it as much as he did.

I remember finally having the courage to go and ask him a question about a problem in the 41C materials on fall afternoon (mostly because I knew I had to understand it) and he looked at me, with what I thought was a look of disdain or horror that one of his colleagues wouldn’t understand a problem that he wrote.  And just as I was going to run in shame, he said something like, “that is such an interesting way to look at that” and I was amazed at how good that felt.  He entertained my ideas and although I felt like he was initially just appeasing me, I soon realized that he was truly and sincerely intrigued.  Our relationship as colleagues and interested problem solvers grew, even after I left PEA.  He allowed me to keep in touch constantly asking him questions and posing them over email.  He taught me so much about writing great problems, encouraging students to ask great questions and making sure that they always felt like they were they most interesting questions ever.

This past summer, the last time I saw Rick, we were talking about the game of Set (you know that really fun card game with the colors, shapes and numbers).  We were just posing really fun questions like “What’s the maximum number of sets you can get in a 12 card deal?”  We found these types of questions intriguing and even after we parted company we continued emailing with email subject lines like “a baker’s dozen of sets”, “set lore” and “the game of set redux.”  He always treated me like a real mathematician even though he was the one who I saw as my inspiration and motivation in that area.

Rick taught me about how to scaffold problems (not too much) so that students would see their way through a topic and find out exciting ideas of mathematics on their own.  I loved to watch him teach, probably observing his classes three or four times a year in order to gain insight into his questioning methods.  He made a point of trying to hear from every student in the class at least once a class.  I don’t know if he ever knew how much of an impact he had on my teaching and philosophy of learning.  I am so grateful.

So how do you say thank you to someone who pushed you in a direction that changed your life?  I guess I have just to recommit myself to learning about and researching the best practices of inquiry and problem-based learning in secondary mathematics education.  I do believe that the world needs to know about the contributions of this man and the department at PEA because without them and the model that they have created, I’m not sure that many of the schools today that utilize their curriculum would be where they are.  I give thanks to Rick and consider myself extremely lucky to have worked with him and shared his enthusiasm for problems.